Implementation of the EAR Method in Detecting Drowsiness in Vehicle Drivers


Implementasi Metode EAR Dalam Mendeteksi Kondisi Mengantuk Pengemudi Kendaraan Bermotor


  • (1) * Andy Suryowinoto            Institut Teknologi Adhi Tama Surabaya  
            Indonesia

  • (2)  Ainur Rohman             Institut Teknologi Adhi Tama Surabaya  
            Indonesia

  • (3)  Wahyu Setyo Pambudi            Institut Teknologi Adhi Tama Surabaya  
            Indonesia

    (*) Corresponding Author

Abstract

Based on data from Polda Metro Jaya Traffic Sector, the number of traffic accidents throughout 2020 was 7,565. With a factor of 1,018 drowsy drivers or 13% of the total incidents. A solution is needed for that. The aim of this research is to calculate the average value of the duration of detection time and the number of flashes per minute, by knowing when the driver is drowsy or not drowsy. The method used is Eye Aspect Ratio (EAR), where the driver will be detected whether he is sleepy or not, by analyzing the parameters of the number of blinks per minute and the duration of the blinks. If the eyes are open (EAR value) less than 0.45 and more than or equal to 3 seconds in one blink, it is categorized as sleepy. Tests were carried out on lighting, namely: morning, afternoon, evening and night light. Test results in daylight and evening light conditions with a light intensity value of 78 lux mean the duration of drowsiness detection is 3.26 seconds and the difference in time duration with the reference theory is 0.26 seconds. Meanwhile, for night light with a light intensity value of 15 lux, the average duration of drowsiness detection is 4.04 seconds and the difference in time duration with the reference theory is 1.04 seconds. Meanwhile, the number of blinks per minute when you are sleepy is 5-8 blinks/minute and when you are not sleepy it is 13-17 blinks/minute, for morning, afternoon, evening and night light conditions. It can be concluded that overall, this system can work well for day and evening and night light conditions.

References

“Angka Kecelakaan Masih Tinggi, Kelalaian Pengemudi Jadi Faktor Utama.” Accessed: Apr. 05, 2024. [Online]. Available: https://otomotif.kompas.com/read/2021/03/31/193100715/angka-kecelakaan-masih-tinggi-kelalaian-pengemudi-jadi-faktor-utama

V. Irawan, A. Rizal, and I. Purnamasari, “Penerapan Algoritma K-Mean Clustering Pada Kecelakaan Lalu Lintas Berdasarkan Kabupaten/Kota Di Provinsi Jawa Tengah Tahun 2020,” Jurnal Ilmiah Wahana Pendidikan, vol. 8, no. 10, pp. 293–300, 2020, doi: 10.5281/zenodo.6820090.

I. Imanuddin, R. Maulana, and M. Munawir, “Deteksi Mata Mengantuk Pada Pengemudi Mobil Menggunakan Metode Viola Jones,” JOINTECS (Journal of Information Technology and Computer Science), vol. 4, no. 2, p. 45, Jul. 2019, doi: 10.31328/JOINTECS.V4I2.1005. DOI: https://doi.org/10.31328/jointecs.v4i2.1005

A. Hidayati and L. Y. Hendrati, “Traffic Accident Risk Analysis by Knowledge, the Use of Traffic Lane, and Speed,” Jurnal Berkala Epidemiologi, vol. 4, no. 2, p. 275, Feb. 2017, doi: 10.20473/jbe.v4i2.2016.275-287. DOI: https://doi.org/10.20473/jbe.V4I22016.275-287

A. H. K. T. Mustofa, “Sistem Peringatan Dini Menggunakan Deteksi Kemiringan Kepala pada Pengemudi Kendaraan Bermotor yang Mengantuk,” JURNAL TEKNIK ITS , vol. 7, no. 2, pp. 281–286, 2018. DOI: https://doi.org/10.12962/j23373539.v7i2.31011

T. Herlambang et al., “Developing Design Of Automatic Egg Quality Detector Using Roi And Rgb Template Methods,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 2, pp. 569–582, Jun. 2022, doi: 10.30598/BAREKENGVOL16ISS2PP569-582. DOI: https://doi.org/10.30598/barekengvol16iss2pp569-582

R. Sulistyowati, A. Suryowinoto, H. A. A. Sujono, and I. Iswahyudi, “Monitoring of road damage detection systems using image processing methods and Google Map,” IOP Conf Ser Mater Sci Eng, vol. 1010, no. 1, 2021, doi: 10.1088/1757-899X/1010/1/012017. DOI: https://doi.org/10.1088/1757-899X/1010/1/012017

B. Hartiansyah, “Deteksi Dan Identifikasi Kondisi Kantuk Pengendara Kendaraan Bermotor Menggunakan Eye Detection Analysis,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 3, no. 1, pp. 59–64, Feb. 2019, doi: 10.36040/JATI.V3I1.541.

R. Kuswara, “Aplikasi pendeteksi mata mengantuk berbasis citra digital menggunakan metode haar classifier secara real rime,” Nov. 2013, Accessed: Apr. 05, 2024. [Online]. Available: http://elib.unikom.ac.id/gdl.php?mod=browse&op=read&id=jbptunikompp-gdl-randykuswa-32320

M. F. Yusri, P. Mangat, and O. Wasenmüller, “Detection of Driver Drowsiness by Calculating the Speed of Eye Blinking,” Oct. 2021, [Online]. Available: http://arxiv.org/abs/2110.11223

A. Islam, N. Rahaman, and M. A. Rahman Ahad, “A Study on Tiredness Assessment by Using Eye Blink Detection,” Jurnal Kejuruteraan, vol. 31, no. 2, pp. 209–214, Oct. 2019, doi: 10.17576/JKUKM-2019-31(2)-04. DOI: https://doi.org/10.17576/jkukm-2019-31(2)-04

“A new vision for center-based engineering research,” A New Vision for Center-Based Engineering Research, pp. 1–88, Aug. 2017, doi: 10.17226/24767. DOI: https://doi.org/10.17226/24767

A. Suryowinoto, T. Herlambang, R. Tsusanto, and F. A. Susanto, “Prototype of an Automatic Entrance Gate Security System Using a Facial Recognition Camera Based on The Haarcascade Method,” J Phys Conf Ser, vol. 2117, no. 1, p. 012015, 2021, doi: 10.1088/1742-6596/2117/1/012015. DOI: https://doi.org/10.1088/1742-6596/2117/1/012015

C. T. Hsieh, “Development of a Low Cost and Raspberry-based Thermal Imaging System for Monitoring Human Body Temperature,” Proceedings of Technical Papers - International Microsystems, Packaging, Assembly, and Circuits Technology Conference, IMPACT, vol. 2021-December, pp. 248–251, 2021, doi: 10.1109/IMPACT53160.2021.9696451. DOI: https://doi.org/10.1109/IMPACT53160.2021.9696451

K. Vijay, W. R. Sabarish Abishek, V. U. Sabarish, and R. Sanjeev Krishnan, “Private Cloud Storage using Raspberry PI via Virtual Network Computing - An Analysis,” 2023 International Conference on Computer Communication and Informatics, ICCCI 2023, 2023, doi: 10.1109/ICCCI56745.2023.10128489. DOI: https://doi.org/10.1109/ICCCI56745.2023.10128489

V. Uma Maheswari, R. Aluvalu, M. V. V. Prasad Kantipudi, K. K. Chennam, K. Kotecha, and J. R. Saini, “Driver Drowsiness Prediction Based on Multiple Aspects Using Image Processing Techniques,” IEEE Access, vol. 10, pp. 54980–54990, 2022, doi: 10.1109/ACCESS.2022.3176451. DOI: https://doi.org/10.1109/ACCESS.2022.3176451

M. Ma and J. Wang, “Multi-View Face Detection and Landmark Localization Based on MTCNN,” Proceedings 2018 Chinese Automation Congress, CAC 2018, pp. 4200–4205, Jul. 2018, doi: 10.1109/CAC.2018.8623535. DOI: https://doi.org/10.1109/CAC.2018.8623535

J. Chandiwala and S. Agarwal, “Driver’s real-time Drowsiness Detection using Adaptable Eye Aspect Ratio and Smart Alarm System,” 2021 7th International Conference on Advanced Computing and Communication Systems, ICACCS 2021, pp. 1350–1355, Mar. 2021, doi: 10.1109/ICACCS51430.2021.9441756. DOI: https://doi.org/10.1109/ICACCS51430.2021.9441756

S. K. Parai, T. Singhadeo, S. Gain, A. Dutta, A. Palui, and D. Chatterjee, “Face Recognition through Landmarks to Find Accurate Distance Between Two Landmarks Using Pythagorean Algorithm,” 2023 14th International Conference on Computing Communication and Networking Technologies, ICCCNT 2023, 2023, doi: 10.1109/ICCCNT56998.2023.10307052. DOI: https://doi.org/10.1109/ICCCNT56998.2023.10307052

P. Singh, S. Mahim, and S. Prakash, “Real-Time EAR Based Drowsiness Detection Model for Driver Assistant System,” 2022 International Conference on Signal and Information Processing, IConSIP 2022, 2022, doi: 10.1109/ICONSIP49665.2022.10007514. DOI: https://doi.org/10.1109/ICoNSIP49665.2022.10007514

Picture in here are illustration from public domain image (License) or provided by the author, as part of their works
Published
2024-04-30
 
Section
Electrical Engineering