Prototype Monitoring and Controlling of Wastewater Treatment Plant (WWTP) on IoT-Free Output Channels 


Prototype Monitoring dan Controlling Instalasi Pengolahan Air Limbah (IPAL) pada Saluran Output Berbasis IoT


  • (1) * Iswanto Iswanto            Widyagama University Malang  
            Indonesia

  • (2)  Fachrudin Hunaini            Widyagama University Malang  
            Indonesia

  • (3)  Dedi Usman Effendy             Widyagama University Malang  
            Indonesia

    (*) Corresponding Author

Abstract

The largest water pollution occurs due to the disposal of waste from the industrial sector, while some of it comes from the household sector. In the labor-intensive industrial sector and the household sector, domestic liquid waste is generated. The high level of liquid waste pollution can be overcome by using a wastewater treatment plant (WWTP). Wastewater parameters according to research that has been done, namely pH, Turbidity, and Ammonia are very important parameters and the main priority for the quality of wastewater discharged into the environment. In this study, a prototype monitoring and controlling WWTP on the output channel was designed by measuring wastewater parameters and an Internet of Things (IoT) based pump output control system. This prototype is programmed with 2 mode options, namely auto mode where the controlling system works based on program commands with target limits, namely pH 6 – 9, Turbidity < 300 NTU, and Ammonia < 20 PPM, if the wastewater measurement value is on target, the system activates the outgoing pump. for direct disposal to the environment. Meanwhile, if it does not meet the target, the system activates the treatment pump to return the wastewater back to the WWTP. Then the manual mode, which is the controlling system, works by operating the operator directly to activate the outgoing or treatment pump on a smartphone using the Blynk application. In Auto and Manual mode, wastewater parameters can be monitored on a smartphone using the Blynk application. All sensors used have been calibrated with 2 calibrator solutions. The calibration results show an error value of 0.115 for the pH sensor, an error value of 0.075 for the Turbidity sensor, and an error value of 0.115 for the Ammonia sensor.

 

Author Biographies

Iswanto Iswanto, Widyagama University Malang

Department of Electrical Engineering

Fachrudin Hunaini, Widyagama University Malang

Department of Electrical Engineering

Dedi Usman Effendy, Widyagama University Malang

Department of Electrical Engineering

References

. Sandy Tyas Wahyu Apriyanto, “Rancang Bangun Pemantauan Dan Pengendalian pH Limbah Cair Dengan Metode Fuzzy Secara Wireless,” Conference on Innovation and Application of Science and Technology (CIASTECH 2019),Universitas Widyagama Malang, Oktober 2019.

. Hafiidhudin, “Prototipe Sistem Otomatisasi Instalasi Pengolahan Air Limbah (IPAL) Dan Monitoring Secara Realtime Berbasis Mikrokontroler,” Program Studi Teknik Elektro, Fakultas Teknik-Universitas Pakuan, 2018.

. Handoko Rusiana Iskandar, Hermadani, Dede Irawan Saputra, Hajiar Yuliana, “Eksperimental Uji Kekeruhan Air Berbasis Internet of Things Menggunakan Sensor DFRobot SEN0189 dan MQTT Cloud Server,” jurnal.umj.ac.id/index.php/semnastek, vol. 6 No 3, Oktober 2019.

. Trisiani Dewi Hendrawati, “Sistem Pemantauan Kualitas Air Sungai di Kawasan Industri Berbasis WSN dan IoT,” JTERA (Jurnal Teknologi Rekayasa), vol. 4. No. 2, pp. 283–292, Desember 2019.

. Muhammad Akbar Nugroho dan Muhammad Rivai, “Sistem Kontrol dan Monitoring Kadar Amonia untuk Budidaya Ikan yang Diimplementasi pada Raspberry Pi 3B,” Jurnal Teknik ITS, Departemen Teknik Elektro, Fakultas Teknologi Elektro, Institut Teknologi Sepuluh Nopember, vol. 7, No 2, 2018.

. Wahyu Andrianto, “Sistem Pengontrolan Lampu Menggunakan Arduino Berbasis Android,” Program studi Teknik Informatika, Fakultas Teknik Universitas Islam Majapahit, 2018.

. Goib Wiranto, Tri Rahajoeningroem, Al Fatin Fernanda, “Sistem Monitoring Kualitas Air Menggunakan Sensor Turbidity Metode Nephelometri Berbasis Raspberry PI 3,” Jurnal Telekontran, Program Studi Teknik Elektro, Fakultas Teknik dan Ilmu Komputer, Universitas Komputer Indonesia, vol. 8, No. 1, Apr. 2020.

. Prio Handoko, “Sistem Kendali Perangkat Elektronika Monolitik Berbasis Arduino Uno R3,” jurnal.umj.ac.id/index.php/semnastek, Program Studi Teknik Informatika, Fakultas Teknologi dan Desain, Universitas Pembangunan Jaya, Tangerang Selatan, vol. 6, No. 4, Nov. 2017.

. Fenny Vinola, Abdul Rakhman, “Sistem Monitoring dan Controlling Suhu Ruangan Berbasis Internet of Things,” Jurnal Teknik Elektro dan Komputer, Program Studi Teknik Telekomunikasi, Jurusan Teknik Elektro, Politeknik Negeri Sriwijaya, 30139, Indonesia, vol. 09 No. 02, pp. 117–126, Agustus 2020.

. S.Samsugi, Dyan Kastutara, “Sistem Kendali Jarak Jauh Berbasis Arduino Dan Modul Wifi ESP8266,” Jurnal Rekayasa Teknologi Industri dan Informasi – Sekolah Tinggi Teknologi Nasional Yogyakarta, vol. 3, No 3, p. 110, 2017.

. D. Pramudita, “Prototype Sistem Buka Tutup Pintu Air Otomatis Pada Persawahan Berbasis Arduino Uno,” Jurusan Teknik Elektro Universitas Muhammadiyah Surakarta, vol. 2017.

. Muammarul Imam, Esa Apriaskar, dan Djuniadi, “Pengendalian Suhu Air Menggunakan Sensor Suhu Ds18b20,” Jurnal J-Ensitec, Jurusan Teknik Elektro, Fakultas Teknik, Universitas Negeri Semarang, vol. 06 No. 01, Desember 2019.

. Siti Sulbiyah Kurniasih,Dedi Triyanto,Yulrio Brianorman, “Rancang Bangun Alat Pengisi Air Otomatis Berbasis Mikrokontroler,” Jurnal Coding, Sistem Komputer Utan, Jurusan Sistem Komputer, Fakultas MIPA Universitas Tanjungpura, vol. 04, No.3, pp. 43–52, 2016.

. L. Pambudi, K. M. Ismail, and H. Sudjanto, “Rancangan Sistem Otomatis Chlorinator Pada Distribusi Air Bersih Di Bandar Udara International Soekarno-Hatta,” Jurnal Ilmiah Aviasi Langit Biru, vol. 12, No.3, p. 10, 2019.

Picture in here are illustration from public domain image (License) or provided by the author, as part of their works
Published
2023-04-14
 
Section
Control System