Rancang Bangun Detektor Standart Preform Botol Minuman Menggunakan Metode Jaringan Saraf Tiruan


Design Of Standart Detector Standart Drink Bottle Using Artificial Neural Network Method


  • (1) * Joko Wahyunarto            Universitas Widyagama Malang  
            Indonesia

  • (2)  Fachrudin Hunaini            Universitas Widyagama Malang  
            Indonesia

  • (3)  Istiadi Istiadi            Universitas Widyagama Malang  
            Indonesia

    (*) Corresponding Author

Abstract

Preform is a semi-finished material from a bottle before cooking in the blowing process. Standards form most, same shapes and colors in one production. However, it does not have to close in one production which requires several preforms that have different colors and weights than other preforms so that they are not included in the standard and must be rejected. In this case a standard detector and color of the preform drink bottle were made using backpropagation neural network method where hardware that loaded arduino uno, photodiode sensor, load cell and HX 711 module and LCD i2c 16 x 2. Photodiode sensors can be used in blue preform together with load cell which is translated directly preform which is directly converted by the HX711 module. Two input data is then processed in the Arduino UNO module. Data output from Arduino UNO is approved on the LCD and processed in the Artificial Neural Network in Matlab on the laptop. The final output of the research results will be displayed in the command window matlab column containing rich "YES" or "NO". In this study backpropagation artificial neural networks as a method to provide accurate assessment by displaying the test results with 19 grams, color density 8 with a voltage of 0.038 Volts and output data is 1 with error data -4.75E13.

References

M. Mas’ ud, “Optimasi Proses Mesin Stretch Blow Moulding Pada Botol 600 ml Dengan Metode RSM (Response Surface

Methodology) Studi Kasus di PT. Uniplastindo Interbuana,” Media Mesin Maj. Tek. Mesin, vol. 18, no. 1, 2017.

P. E. Pambudi, E. Sutanta, dan Mujiman -, “Identifikasi Daging Segar Menggunakan Sensor Warna RGB TCS3200-DB,” J. Teknol. Technoscientia, vol. 6, no. 2, hlm. 177–184, Feb 2014.

N. Nasution, A. Supriyanto, dan S. W. Suciyati, “Implementasi Sensor Fotodioda sebagai Pendeteksi Serapan Sinar Infra Merah pada Kaca,” J. Teori Dan Apl. Fis., vol. 3, no. 2, Jul 2015.

E. F. Yandra, B. P. Lapanporo, dan M. I. Jumarang, “Rancang Bangun Timbangan Digital Berbasis Sensor Beban 5 Kg Menggunakan Mikrokontroler Atmega328,” POSITRON, vol. 6, no. 1, Mei 2016. DOI: https://doi.org/10.26418/positron.v6i1.15924

Y. P. Wiharja dan A. Harjoko, “Pemrosesan Citra Digital untuk Klasifikasi Mutu Buah Pisang Menggunakan Jaringan Saraf Tiruan,” IJEIS Indones. J. Electron. Instrum. Syst., vol. 4, no. 1, hlm. 57–68, Apr 2014.

K. Kiki dan S. Kusumadewi, “Jaringan Saraf Tiruan dengan Metode Backpropagation untuk Mendeteksi Gangguan Psikologi,” Media Inform., vol. 2, no. 2, 2004. DOI: https://doi.org/10.20885/informatika.vol2.iss2.art1

A. C. I. Rukmana dan A. Ro’uf, “Aplikasi Sensor Load Cell pada Purwarupa Sistem Sortir Barang,” IJEIS Indones. J. Electron. Instrum. Syst., vol. 4, no. 1, hlm. 35–44, Apr 2014.

S. Kosasi, “Penerapan Metode Jaringan Saraf Tiruan Backpropagation Untuk Memprediksi Nilai Ujian Sekolah,” J. Teknol., vol. 7, hlm.9, 2014.

E. Setyaningsih, D. Prastiyanto, dan S. Suryono, “Penggunaan Sensor Photodioda sebagai Sistem Deteksi Api pada Wahana Terbang Vertical Take-Off Landing (VTOL),” J. Tek. Elektro, vol. 9, no. 2, hlm. 53–59, Des 2017.

N. A. Tindriyani, A. Murnomo, dan A. Suryanto, “Implementasi Neural Network pada Matlab untuk Prakiraan Konsumsi Beban Listrik Kabupaten Ponorogo Jawa Timur,” J. Tek. Elektro, vol. 9, no. 1, hlm. 7– 12, 2017.

S. Widianto, K. Adi, dan H. Danusaputro, “Rancang Bbangun Alat Deteksi Warna Untuk Membantu Penderita Buta Warna Berbasis Mikrokontroler AVR ATMEGA16,” YOUNGSTER Phys. J., vol. 2, no. 3, hlm. 133–142, Jul 2013.

Picture in here are illustration from public domain image (License) or provided by the author, as part of their works
Published
2019-10-30
 
Section
Control System