Real-Time IoT-Integrated Ground Control Station (GCS) for Unmanned Aerial Vehicle (UAV) Monitoring System

Authors

  • Paramita Eka Wahyu Lestari Politeknik Elektronika Negeri Surabaya
  • Mohamad Ridwan Politeknik Elektronika Negeri Surabaya
  • Ridzki Fadillah Ramadhan Politeknik Elektronika Negeri Surabaya
  • Faridatun Nisfa Politeknik Elektronika Negeri Surabaya

DOI:

https://doi.org/10.21070/jeeeu.v9i2.1710

Keywords:

UAV, Website, Telemetry, IMU, Flight Control, Real-time

Abstract

Conventional Ground Control Stations (GCS) for UAVs are often platform-bound (PC-only or Android apps), creating installation overhead and constraining mobility. This work introduces a browser-native, web-based GCS that runs across devices without prior installation and ingests MAVLink telemetry from a RadioLink Mini Pix V1.0 flight controller via 433 MHz UART radio telemetry, then streams decoded data to the UI over websocket/JSON. The system visualizes attitude (yaw, pitch, roll/IMU), GPS position and mapping, compass bearing, altitude, and flight status in real time, with user authentication and a structured landing/login flow. In controlled tests, the application delivered stable live visualization and accurate mapping during a 100 m out-and-back flight, with reported coordinates matching the route. Link-budget characterization across 95, 100, 180, 190, and 240 m showed the expected RSSI degradation with distance and a pronounced dip at 190 m, a practical safe range of ~100 m was identified where signal strength stayed >50% with low interference. Compared with PC or Android-based GCS, the proposed approach improves accessibility (zero-install, multi-device) and operational flexibility, while maintaining reliable real-time telemetry for mission monitoring.

References

[1] Rachmawati, P., & Asyam, M. H. (2021). Sistem kontrol pesawat tanpa awak untuk menentukan waypoint berbasis Ardupilot. Quantum Teknika: Jurnal Teknik Mesin Terapan, 2(2), 80–86. doi: 10.18196/jqt.v2i2.11490

[2] Mohsan, S.A.H., Othman, N.Q.H., Li, Y. et al. (2023). Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends. Intel Serv Robotics 16, 109–137. doi: 10.1007/s11370-022-00452-4

[3] Bachtiar, M. M., Ardilla, F., & Felinanda, A. A. (2019). Android application design as Ground Control Station (GCS) and waypoint navigation in Unmanned Aerial Vehicle (UAV). Proceedings of the International Electronics Symposium (IES 2019): Role of Techno-Intelligence in Creating an Open Energy System Toward Energy Democracy, 299–306. doi: 10.1109/ELECSYM.2019.8901596.

[4] Laghari, A. A., Jumani, A. K., Laghari, R. A., & Haque, N. (2023). Unmanned aerial vehicles: A review. Cognitive Robotics, 3, 8–22. doi: 10.1016/j.cogr.2022.12.004.

[5] Heimsch, D., Speckmaier, M., Gierszewski, D., Schwaiger, F., Mbikayi, Z., & Holzapfel, F. (2024). Development and implementation of a mission data-handling algorithm for an automatic flight guidance system. Aerospace, 11(2), 115.

doi: 10.3390/aerospace11020115

[6] Hu L, et al. (2021). ‘CloudStation:’ A Cloud-Based Ground Control Station for Drones. IEEE Journal on Miniaturization for Air and Space Systems;1(1):36–42. doi:10.1109/JMASS.2020.3027520.

[7] Putra HI. Desain Antar Muka Ground Control Station untuk Komunikasi dan Monitoring UAV Berbasis Android dan Desktop. Surabaya; 2022.

[8] Duangsuwan, S., & Jamjareegulgarn, P. (2024). Exploring ground reflection effects on received signal strength indicator and path loss in far-field air-to-air for unmanned aerial vehicle-enabled wireless communication. Drones, 8(11), 677.

doi: 10.3390/drones8110677

[9] Gumelar, A., Rachmawati, N., Tenka, N., Firdaus, V., Al-Harits, M., Araska, S., & Syambas, N. (2022). Design and implementation of UAV remote control and monitoring in cloud infrastructure for IoT services. Proceedings of the 2022 International Conference on Telecommunication Systems Services and Applications (TSSA), 1–5.

doi: 10.1109/TSSA56819.2022.100638

[10] Nugroho FA, Sumiharto R, Hujja RM. Pengembangan Sistem Ground Control Station Berbasis Internet Webserver pada Pesawat Tanpa Awak. Indonesian Journal of Electronics and Instrumentation Systems. 2018;8(1):1. doi:10.22146/ijeis.30126.

[11] Kilic, F., Hassan, M., & Hardt, W. (2024). Prototype for multi-UAV monitoring–control system using WebRTC. Drones, 8(10), 551. doi: 10.3390/drones8100551.

[12] Wahid AN. Pemetaan Tambal Ban dan Toko Ban Dalam Maps Berbasis Aplikasi Android. 2021. Accessed: May 28, 2024. Available: https://repository.uksw.edu//handle/123456789/27297

[13] Ortiz, G., Boubeta-Puig, J., Criado, J., Corral-Plaza, D., Garcia-de-Prado, A., Medina-Bulo, I., & Iribarne, L. (2022). A microservice architecture for real-time IoT data processing: A reusable Web of Things approach for smart ports. Computer Standards & Interfaces, 81, 103604. doi: 10.1016/j.csi.2021.103604.

[14] Ehsan, A., Abuhaliqa, M. A. M. E., Catal, C., & Mishra, D. (2022). RESTful API testing methodologies: Rationale, challenges, and solution directions. Applied Sciences, 12(9), 4369. doi: 10.3390/app12094369.

[15] Behjati, M., Nordin, R., Zulkifley, M. A., & Abdullah, N. F. (2022). 3D global path planning optimization for cellular-connected UAVs under link reliability constraint. Sensors, 22(22), 8957. doi: 10.3390/s22228957

Downloads

Published

2025-10-31

Issue

Section

Telecommunication

Categories