Automatic Pesticide Spray Based on Digital Image Processing in Chili Plants by Classification Backpropagation Neural Network Method


Penyemprot Pestisida Otomatis Berbasis Pengolahan Citra Digital pada Tanaman Cabai dengan Metode Klasifikasi


  • (1) * Ian Faizal Idenugraha             Trunojoyo University Madura  
            Indonesia

  • (2)  Diana Rahmawati             Trunojoyo University Madura  
            Indonesia

  • (3)  Kunto Aji Wibisono             Trunojoyo University Madura  
            Indonesia

  • (4)  Miftachul Ulum             Trunojoyo University Madura  
            Indonesia

    (*) Corresponding Author

Abstract

In Indonesia demand for chili still quite high and as if it has become a basic necessity for the community. Along with the world in the food processing industry, there has been an increase in the need for chillies, in addition to the high demand and the selling price of chilli peppers, it has encouraged the interest of the community to cultivate chili plants. However, biotic disorders that cause obstacles in efforts to increase chili production. On the leaves and fruit of the chili plant is a part of body the plant that allows the identification process of disease in the chili plant, because there will be changes in color and texture. The process of disease detection in chili plants through digital image processing using the feature extraction method, which has previously been done pre-processing. Then at the segmen-tation stage a thresholding operation is carried out to separate the healthy / diseased leaves / chili. For the classifi-cation of diseases using BPNN (Backpropagation Neural Network) method. The identification process will results five types of diseases, namely fusarium wilt, bacterial wilt, leaf foliage, curly leaves, and anthracnose. From this data will be sent by smartphone via IoT to the automatic sprayer to spray the type of pesticide in accordance with the dose and type of disease identified. Based on the results of testing using 150 samples of leaf and fruit images on chili plants obtained a success percentage of 43% in the leaves and 83.33% in the chilli fruit.

Author Biographies

Ian Faizal Idenugraha , Trunojoyo University Madura
Electrical Engineering Study Program
Diana Rahmawati , Trunojoyo University Madura

Electrical Engineering Study Program

Kunto Aji Wibisono , Trunojoyo University Madura

Electrical Engineering Study Program

Miftachul Ulum , Trunojoyo University Madura

Electrical Engineering Study Program

References

. ‘164114-ID-penyakit-daun-keriting-kuning-cabai-di-i.pdf’ (no date).

. Aziz, D. A. (2018) ‘Webserver Based Smart Monitoring System Using ESP8266 Node MCU Module’, International Journal of Scientific & Engineering Research, 9(6), pp. 801–808.

. Capsicum, C. et al. (2013) ‘Keparahan penyakit antraknosa pada cabai (’, 1(1), pp. 102–106.

. Djereng, D. K., Kawuri, R. and Ramona, Y. (2017) ‘POTENSI Bacillus sp. B3 SEBAGAI AGEN BIOKONTROL PENYAKIT LAYU BAKTERI YANG DISEBABKAN OLEH Ralstonia sp. PADA TANAMAN CABAI (Capsicum annuum L.)’, Metamorfosa: Journal of Biological Sciences, 4(2), p. 237. doi: 10.24843/metamorfosa.2017.v04.i02.p16.

. Elijah, O. et al. (2018) ‘An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges’, IEEE Internet of Things Journal, 5(5), pp. 3758–3773. doi: 10.1109/JIOT.2018.2844296.

. Eneh, C. K. et al. (2017) ‘Development of a Low Cost Digital Turbine Water Flow Meter for Irrigation Development of a Low Cost Digital Turbine Water Flow Meter for Irrigation Farm’, (June).

. Gonzalez, R. C. and Woods, R. E. (1987) ‘Digital Image Processing.pdf’, p. 503.

. Hidayatullah, M. (2016) ‘Sistem Kendali Keran Wudhu Otomatis Menggunakan Sensor Passive Infra Red (Pir) Berbasis Mikrokontroler Atmega8535 Untuk Menghemat Penggunaan Air’, Jurnal TAMBORA, 1(2), pp. 40–47. doi: 10.36761/jt.v1i2.138.

. Majid, M. (2016) ‘Implementasi arduino mega 2560 untuk kontrol miniatur elevator barang otomatis’, Skripsi, p. 76. Available at: lib.unnes.ac.id/27831/1/5301411060.pdf%0A.

. Mempengaruhi, F. Y. et al. (2019) ‘Faktor-faktor yang mempengaruhi harga cabai rawit di pasar ngablak, kabupaten magelang *’, 15(2), pp. 164–171.

. Parab, R. and Prajapati, S. (2019) ‘IoT based relay operation’, International Journal of Engineering and Advanced Technology, 9(1), pp. 6515–6520. doi: 10.35940/ijeat.A1415.109119.

. Penelitian, B. and Serealia, T. (2015) ‘MASALAH PENYAKIT BULAI DAN ALTERNATIF PEMECAHANNYA PROPINSI JAWA TIMUR Burhanuddin’, pp. 375–380.

. Ramya, V. and Lydia, M. A. (2016) ‘Leaf Disease Detection and Classification using Neural Networks’, International Journal of Advanced Research in Computer and Communication Engineering, 5(11), pp. 207–210. doi: 10.17148/IJARCCE.2016.51144.

. Rekursif, J. (2017) ‘Aplikasi Biometrika pengenalan Citra Sidik Jari dengan Metode Minutiae Dan Artificial Neural’, Jurnal Rekursif, 5(1), pp. 107–120.

. Siswantoro, J., Hilman, M. Y. and Widiasri, M. (2017) ‘Computer vision system for egg volume prediction using backpropagation neural network’, IOP Conference Series: Materials Science and Engineering, 273, p. 012002. doi: 10.1088/1757-899x/273/1/012002.

. SUTARINI, N. et al. (2015) ‘Pengendalian Penyakit Layu Fusarium pada Tanaman Cabai Besar (Capsicum annuum L.) dengan Kompos dan Pupuk Kandang yang dikombinasikan dengan Trichoderma sp. di Rumah Kaca’, E-Jurnal Agroekoteknologi Tropika (Journal of Tropical Agroecotechnology), 4(2), pp. 135–144.

. Yuantari, M. G. C., Widianarko, B. and Sunoko, H. R. (2015) ‘Analisis Risiko Pajanan Pestisida Terhadap Kesehatan Petani’, Jurnal Kesehatan Masyarakat, 10(2), p. 239. doi: 10.15294/kemas.v10i2.3387.

. Zahrah, S., Saptono, R. and Suryani, E. (2016) ‘Identifikasi Gejala Penyakit Padi Menggunakan Operasi Morfologi Citra’, Snik, (October 2016), pp. 100–106.

Picture in here are illustration from public domain image (License) or provided by the author, as part of their works
Published
2020-04-27
 
Section
Computer Engineering

Most read articles by the same author(s)