Abstract

Almost all industries use induction motors as production aids, this is due to several reasons, namely, the resulting rotational speed is constant, the induction motor does not have a brush so that the friction loss can be reduced, and easy maintenance. In this study is to detect damage to the stator winding caused by lamination of the windings so that a short circuit occurs in one phase, which is also called a turn fault. The Fast Fourier Transform (FFT) method is used to detect currents with a load of 0%, and 100% which will later be detected for classification on the Neural Network (NN). Categorizing the level of loading and the level of damage experienced by induction motors, namely turn to turn u1, turn to turn u1 and v1, and turn to turn u1, v1 and w1. The reading of the test results conducted on the Neural Network has good prediction results because the Mean Squared Error (MSE) produced does not exceed the specified 5% erracy level.

References

  1. . Agung Hermawan, Iradiratu D.P.K, Belly Yan Dewantara. Deteksi Kegagalan Isolasi Pada Belitan Stator Motor Induksi Berbasis Fast Fourier Transform. CITEE 2019. ISSN: 2085-6350. Yogyakarta, 24-25 Juli 2019.
  2. . Fahmi Ilman Huda, Iradiratu D.P.K, Belly Yan Dewantara. Identifikasi Gangguan Belitan Stator Motor Induski Metode Wavelet. ISBN 978-602-52386-1-1. Prosiding SNST ke-10 Tahun 2019. Fakultas Teknik Universitas Wahid Hasyim.
  3. . Yogi Prasetyadi, Iradiratu D.P.K, Belly Yan Dewantara. Fast Fourier Transform (FFT) Untuk Mendeteksi Kerusakan Bola Bearing Pada Motor Induksi Melalui Arus Stator. CITEE 2019. ISSN: 2085-6350. Yogyakarta, 24-25 Juli 2019.
  4. . Mohammad Amrul Faiz, Iradiratu D.P.K, Belly Yan Dewantara. Identifikasi Ganguan Batang Rotor Pada Motor Iduksi Menggunakan Analisa Arus Stator Berbasis Decomposition Wavelet Transform (Dwt). CITEE 2019. ISSN: 2085-6350. Yogyakarta, 24-25 Juli 2019.
  5. . Muhamad Faturrohman, Iradiratu D.P.K, Belly Yan D, Daeng R, Istiyo W. Identifikasi Kerusakan Inner Race Bearing Pada Motor Induksi Berbasis Decomposition Wavelet Transform Melalui Analisa Arus Steady State. CITEE 2019. ISSN: 2085-6350. Yogyakarta, 24-25 Juli 2019.
  6. . Al-Deen, Kareem Noor, et al. Signature Analysis as a Medium for Faults Detection in Induction Motors. In: 2018 International Conference on Computing Sciences and Engineering (ICCSE). IEEE, 2018. p. 1-6.
  7. . Wanggon, B.; Sittisrijan, N.; Ruangsinchaiwanich, S. Fault detection technique for identifying broken rotor bars by artificial neural network method. In: 2014 17th International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2014. p. 3436-3440.
  8. . Fajar Shodiq, Iradiratu D.P.K, Belly Yan Dewantara. Monitoring Kerusakan Batang Rotor Pada Motor Induksi Menggunakan Analisa Arus Stator Berbasis Fast Fourier Transform. CITEE 2019. ISSN: 2085-6350. Yogyakarta, 24-25 Juli 2019.
  9. . Abduh, M., Iradiratu, D.P.K. and Dewantara, B.Y., 2019. Deteksi Kerusakan Outer Race Bearing Pada Motor Induksi Melalui Analisa Arus Stator Menggunakan Metode Fast Fourier Transform (FFT). Prosiding SENIATI, 5(3), pp.175-181.
  10. . Iradiratu, D. P. K., Belly Yan Dewantara, and Achmad Misfakul Janudin. "Deteksi Kerusakan Inner Race Bearing Menggunakan Motor Current Signature Analysis Berbasis Fast Fourier Transform." Jurnal Teknik Elektro dan Komputer TRIAC 6.1 (2019).
  11. . Iradiratu, Diah PK, et al. "Decomposition Wavelet Transform as Identification of Outer Race Bearing Damage Through Stator Flow Analysis in Induction Motor." 2019 International Conference on Information and Communications Technology (ICOIACT). IEEE, 2019.
  12. . Qomah, Isti, Dimas Anton Asfani, and Dedet Candra Riawan. "Deteksi Kerusakan Batang Rotor Pada Motor Induksi Menggunakan Analisis Arus Mula Berbasis Hilbert Transform." Jurnal Teknik ITS 5.2 (2016): B115-B121.