Placement for Condition Monitoring of Rotating Machine Elements Based on HSD
Penempatan untuk Pemantauan Kondisi Elemen Mesin Berputar Berdasarkan HSD
Abstract
Careful placement and selection of sensors is the key to accurate motorbike monitoring. This research aims to develop an optimal sound sensor placement strategy for monitoring the condition of induction motor bearing elements. Sensor placement will affect monitoring accuracy. The nature of sound signals is that they easily overlap with surrounding sounds. Different placement of sound sensors will provide opportunities for non-motor sounds to overlap. The bearing condition monitoring system was developed in real time by processing sound signals using fast Fourier transform (FFT). The sensor placement strategy needs to be taken into account so that monitoring results obtain high accuracy. The honestly significant difference (HSD) approach is a test used to determine the best sensor placement. Tests were carried out with variations in the placement of sound sensor distances and different levels of bearing damage. The results of the research are the best sensor placement at a distance of 110 cm from the motor body with a detection accuracy of 94.14%.
References
S. K. Gundewar and P. V. Kane, Condition Monitoring and Fault Diagnosis of Induction Motor, vol. 9, no. 4. Springer Singapore, 2021. doi: 10.1007/s42417-020-00253-y. DOI: https://doi.org/10.1007/s42417-020-00253-y
X. Song, Z. Wang, and J. Hu, “Detection of Bearing Outer Race Fault in Induction Motors using Motor Current Signature Analysis,” 2019 22nd Int. Conf. Electr. Mach. Syst. ICEMS 2019, pp. 1–5, 2019, doi: 10.1109/ICEMS.2019.8922036. DOI: https://doi.org/10.1109/ICEMS.2019.8922036
O. AlShorman et al., “Sounds and acoustic emission-based early fault diagnosis of induction motor: A review study,” Adv. Mech. Eng., vol. 13, no. 2, pp. 1–19, 2021, doi: 10.1177/1687814021996915. DOI: https://doi.org/10.1177/1687814021996915
A. Kundu, Institute of Electrical and Electronics Engineers, Institute of Electrical and Electronics Engineers. Kolkata Section. PES Chapter, and Institute of Electrical and Electronics Engineers. Kolkata Section, “2020 IEEE International Conference for Convergence in Engineering : proceedings : 5-6 September, Kolkata, India,” pp. 16–20, 2020.
M. Sameh, A. Tarek, and K. Yassine, “Bearing and Rotor Faults detection and diagnosis of Induction Motors using Statistical Neural Networks,” Proc. - STA 2020 2020 20th Int. Conf. Sci. Tech. Autom. Control Comput. Eng., pp. 77–81, 2020, doi: 10.1109/STA50679.2020.9329334. DOI: https://doi.org/10.1109/STA50679.2020.9329334
P. Gangsar and R. Tiwari, “Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review,” Mech. Syst. Signal Process., vol. 144, p. 106908, 2020, doi: 10.1016/j.ymssp.2020.106908. DOI: https://doi.org/10.1016/j.ymssp.2020.106908
W. J. Lee, K. Xia, N. L. Denton, B. Ribeiro, and J. W. Sutherland, “Development of a speed invariant deep learning model with application to condition monitoring of rotating machinery,” J. Intell. Manuf., vol. 32, no. 2, pp. 393–406, 2021, doi: 10.1007/s10845-020-01578-x. DOI: https://doi.org/10.1007/s10845-020-01578-x
F. Bethke, L. Brabetz, and M. Ayeb, “Condition Monitoring of Electrical Machines Using Detection Coils,” IEEE Int. Symp. Ind. Electron., vol. 2019-June, pp. 261–266, 2019, doi: 10.1109/ISIE.2019.8781090. DOI: https://doi.org/10.1109/ISIE.2019.8781090
M. R. Barusu and M. Deivasigamani, “Non-Invasive Vibration Measurement for Diagnosis of Bearing Faults in 3-Phase Squirrel Cage Induction Motor Using Microwave Sensor,” IEEE Sens. J., vol. 21, no. 2, pp. 1026–1039, 2021, doi: 10.1109/JSEN.2020.3004515. DOI: https://doi.org/10.1109/JSEN.2020.3004515
C. N. Okwuosa, U. E. Akpudo, and J. W. Hur, “A Cost-Efficient MCSA-Based Fault Diagnostic Framework for SCIM at Low-Load Conditions,” Algorithms, vol. 15, no. 6, 2022, doi: 10.3390/a15060212. DOI: https://doi.org/10.3390/a15060212
A. Mejia-Barron, G. Tapia-Tinoco, J. R. Razo-Hernandez, M. Valtierra-Rodriguez, and D. Granados-Lieberman, “A neural network-based model for MCSA of inter-turn short-circuit faults in induction motors and its power hardware in the loop simulation,” Comput. Electr. Eng., vol. 93, no. May, p. 107234, 2021, doi: 10.1016/j.compeleceng.2021.107234. DOI: https://doi.org/10.1016/j.compeleceng.2021.107234
M. Deeb, N. F. Kotelenets, T. Assaf, H. M. Sultan, and A. S. A. Akaysheedept, “Three-phase induction motor short circuits fault diagnosis using MCSA and NSC,” Proc. 3rd 2021 Int. Youth Conf. Radio Electron. Electr. Power Eng. REEPE 2021, 2021, doi: 10.1109/REEPE51337.2021.9388051. DOI: https://doi.org/10.1109/REEPE51337.2021.9388051
M. S. Moiz et al., “Health Monitoring of Three-Phase Induction Motor Using Current and Vibration Signature Analysis,” 2019 Int. Conf. Robot. Autom. Ind. ICRAI 2019, pp. 45–48, 2019, doi: 10.1109/ICRAI47710.2019.8967356. DOI: https://doi.org/10.1109/ICRAI47710.2019.8967356
D. Goyal, C. Mongia, and S. Sehgal, “Applications of Digital Signal Processing in Monitoring Machining Processes and Rotary Components: A Review,” IEEE Sens. J., vol. 21, no. 7, pp. 8780–8804, 2021, doi: 10.1109/JSEN.2021.3050718. DOI: https://doi.org/10.1109/JSEN.2021.3050718
O. Alshorman et al., “A Review of Artificial Intelligence Methods for Condition Monitoring and Fault Diagnosis of Rolling Element Bearings for Induction Motor,” Shock Vib., vol. 2020, no. Cm, 2020, doi: 10.1155/2020/8843759. DOI: https://doi.org/10.1155/2020/8843759
M. J. Hasan, M. M. M. Islam, and J. M. Kim, “Acoustic spectral imaging and transfer learning for reliable bearing fault diagnosis under variable speed conditions,” Meas. J. Int. Meas. Confed., vol. 138, pp. 620–631, 2019, doi: 10.1016/j.measurement.2019.02.075. DOI: https://doi.org/10.1016/j.measurement.2019.02.075
S. Zhang et al., “Model-Based Analysis and Quantification of Bearing Faults in Induction Machines,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 2158–2170, 2020, doi: 10.1109/TIA.2020.2979383. DOI: https://doi.org/10.1109/TIA.2020.2979383
N. W. Nirwan and H. B. Ramani, “Condition monitoring and fault detection in roller bearing used in rolling mill by acoustic emission and vibration analysis,” Mater. Today Proc., vol. 51, no. xxxx, pp. 344–354, 2021, doi: 10.1016/j.matpr.2021.05.447. DOI: https://doi.org/10.1016/j.matpr.2021.05.447
P. Ewert, C. T. Kowalski, and T. Orlowska-Kowalska, “Low-cost monitoring and diagnosis system for rolling bearing faults of the induction motor based on neural network approach,” Electron., vol. 9, no. 9, pp. 1–18, 2020, doi: 10.3390/electronics9091334. DOI: https://doi.org/10.3390/electronics9091334
M. N. S. K. Shabbir, X. Liang, and S. Chakrabarti, “An ANOVA-Based Fault Diagnosis Approach for Variable Frequency Drive-Fed Induction Motors,” IEEE Trans. Energy Convers., vol. 36, no. 1, pp. 500–512, 2021, doi: 10.1109/TEC.2020.3003838. DOI: https://doi.org/10.1109/TEC.2020.3003838
Karyatanti, I.D.P., Winarno, I., Wijayanto, A., Harahab, N., Wibowo, R.B.E. and Budiarto, A., 2023. Sound Sensor Placement Strategy for Condition Monitoring of Induction Motor Bearing. Pertanika Journal of Science & Technology, 31(6). DOI: https://doi.org/10.47836/pjst.31.6.25
Vanraj, Dhami, S.S. & Pabla, B.S. (2017). Optimization of sound sensor placement for condition monitoring of fixed-axis gearbox. Cogent Engineering, 4(1), p.1345673. https://doi.org/10.1080/23311916.2017.1345673 DOI: https://doi.org/10.1080/23311916.2017.1345673
Glowacz, A., Glowacz, W., Glowacz, Z., & Kozik, J. (2018). Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals. Measurement, 113, 1-9.. https://doi.org/10.1016/j.measurement.2017.08.036 DOI: https://doi.org/10.1016/j.measurement.2017.08.036
Zhong, J.H., Wong, P.K. and Yang, Z.X., 2018. Fault diagnosis of rotating machinery based on multiple probabilistic classifiers. Mechanical Systems and Signal Processing, 108, pp.99-114. https://doi.org/10.1016/j.ymssp.2018.02.009 DOI: https://doi.org/10.1016/j.ymssp.2018.02.009
Goyal, D., Pabla, B.S. & Dhami, S.S. (2019). Non-contact sensor placement strategy for condition monitoring of rotating machine-elements. Engineering Science and Technology, an International Journal, 22(2), pp.489-501. DOI: https://doi.org/10.1016/j.jestch.2018.12.006
Copyright (c) 2025 Iradiratu Diah Prahmana Karyatanti, Muhammad Hakim Ramadhan

This work is licensed under a Creative Commons Attribution 4.0 International License.