Analysis of The Impact of Temperature and Discharge Current on The Efficiency of LiFePO4 Batteries in Solar Charging Stations


  • (1) * Istiyo Winarno            Universitas Hang Tuah Surabaya  
            Indonesia

  • (2)  Ach. Fathullah Pria Agung            Universitas Hang Tuah Surabaya  
            Indonesia

  • (3)  Belly Yan Dewantara            Universitas Hang Tuah Surabaya  
            Indonesia

    (*) Corresponding Author

Abstract

The demand for electrical energy is increasing, along with technological advancements and population growth. Many countries still rely on petroleum, coal, and aerosol gasoline, exacerbating global warming. Electric vehicles offer a promising solution to reduce greenhouse gas emissions and dependence on fossil fuels, although their primary challenge is the availability of charging infrastructure. Solar-powered electric motor charging stations can help reduce electricity demand and global warming. An efficient charging system is needed to analyse the impact of temperature and discharge current on the energy produced to achieve this. Several load tests and temperature measurements over 5 days were conducted to cluster temperatures occurring throughout a full day. The tests using data acquisition showed energy losses caused by the effect of temperature on the charging station's storage battery. Energy efficiency graphs for each test case indicated a varied decrease in energy efficiency, with higher efficiency at lower temperatures and smaller energy losses compared to other temperatures. The load amount also affects the magnitude of energy losses. At a 500W load, the average energy loss was 46Wh, while at a 1000W load, the average energy loss was 52Wh per hour of testing the storage battery discharge. In summary, temperature and load amount can affect energy efficiency and the resulting losses.

References

Asfani, D. A., Darmayanti, N. D. S., Fahmi, D., Prabowo, P., Sidartha, I., Wibawa, A., ... & Putra, D. F. U. (2024). Optimal charging design and analysis for electric vehicles based on SOC and parking duration at charging stations using fuzzy logic based controllers. In AIP Conference Proceedings (Vol. 2838, No. 1). AIP Publishing. DOI: https://doi.org/10.1063/5.0181020

Hutapea, H. H. (2023). Analisis Kinerja Baterai Pada Pembangkit Listrik Tenaga Surya 2 Kwp Kedaireka Universitas Hkbp Nommensen Medan. DOI: https://doi.org/10.33884/comasiejournal.v9i8.7992

Rusiana Iskandar, H. et al. (2021) ‘ANALISIS PERFORMA BATERAI JENIS VALVE REGULATED LEAD ACID PADA PLTS OFF-GRID 1 KWP’, 13(2). Available at: https://doi.org/10.24853/jurtek.13.2.129-140.

Triwijaya, S., Pradipta, A. and Prasetyo, Y. (2023) ‘Battery Management Optimization Considers State Of Charge Using Coulomb Counting Method, Journal Geuthee of Engineering and Energy (JOGE), 2(1), pp. 1–07. DOI: https://doi.org/10.52626/joge.v2i1.14

Nizam, M., Maghfiroh, H., Rosadi, R. A., & Kusumaputri, K. D. (2020, April). Battery management system design (BMS) for lithium ion batteries. In AIP Conference Proceedings (Vol. 2217, No. 1). AIP Publishing. DOI: https://doi.org/10.1063/5.0000649

Ismoyo, G. (2021). Analisis Efisiensi Solar Charge Controller Tipe PWM Pada Stasiun Pengisian Sepeda Listrik Teknik Elektro Universitas Brawijaya (Doctoral dissertation, Universitas Brawijaya).

Pratama, R. (2019). Pengembangan Sistem Akuisisi Data Arus, Tegangan, Daya Dan Temperatur Pada Pembangkit Listrik Tenaga Surya. Jurnal Edukasi Elektro, 3(2). DOI: https://doi.org/10.21831/jee.v3i2.29812

Yuniarti, E., Triwibowo, J., & Suharyadi, E. (2013). Pengaruh pH, Suhu dan Waktu pada Sintesis LiFePO4/C dengan Metode Sol-Gel Sebagai Material Katoda untuk Baterai Sekunder Lithium. BIMIPA, 23(3), 218-228.

Soehartono, L. H., Musafa, A., & Sujono, S. (2020). PERANCANGAN SISTEM MANAJEMEN BATERAI PADA MOBIL LISTRIK STUDI KASUS: BATERAI KAPASITAS 46Ah 12V PADA NEO BLITS 2. MAESTRO, 3(1), 86-97.

D. dwi aprisetiawan Diki, I. Winarno, and B. Y. Dewantara, “Penggunaan Filter Aktif Dengan Pi Controller Untuk Meredam Harmonisa Pada Pembangkit Listrik Tenaga Solar Cell,” Kurvatek, vol. 6, no. 1, pp. 69–80, 2021. DOI: https://doi.org/10.33579/krvtk.v6i1.1853

M. T. Setiawan, I. Winarno, and B. Y. Dewantara, “Implementasi Internet Of Things Dalam Rancang Bangun Sistem Monitoring Pada Solar Cell Berbasis Web,” JEECOM J. Electr. Eng. Comput., vol. 3, no. 1, pp. 34–38, 2021, doi: 10.33650/jeecom.v3i1.1981. DOI: https://doi.org/10.33650/jeecom.v3i1.1981

Sayudi, S., Murdiyat, P., & Bima, L. (2022). Analisis Kebutuhan Daya Dan Komponen Untuk Stasiun Pengisian Baterai Kendaraan Listrik Dengan Sumber Energi PLTS Di Politeknik Negeri Samarinda. Jurnal Teknik Mesin Sinergi, 20(2), 180-187. DOI: https://doi.org/10.31963/sinergi.v20i2.3449

Picture in here are illustration from public domain image (License) or provided by the author, as part of their works
Published
2024-10-31
 
Section
Electrical Power Engineering