Abstract

Solar thermal energy is one type of renewable energy, so this type of energy can be converted into other energy. This study uses a four-axis solar tracker with angle settings on the reflector to get optimal sunlight, scanning to determine the optimal lighting angle, measurement results are stored in real-time in the data logger. This study uses an LDR (Light Dependent Resistor) as a sunlight detector, equipped with several sensors, namely: current, voltage and power sensor (INA219), light sensor (MAX4409), and temperature sensor (DS18B20), and reflector angle as a parameter of solar efficiency panels. . The results showed that a four-axis solar tracker equipped with a reflector was able to increase the output power. The maximum power production produced by solar panels is: At a reflector angle of 300, the maximum power generated by a static panel is 143.43 W while a solar tracker is 175.15 W. At a reflector angle of 450 the maximum power generated by a static panel is 170.01 W and solar tracker 236.36 W. At an angled reflector of 600 the full power generated by a static panel is 87.77 W, and a solar tracker is 123.36 W. This study concludes that a solar tracker panel with an angle setting of 300 is more capable of maximizing power output than a static solar panel.

References

  1. O. Januardi, A. Hiendro, and Syaifurrahman, “Pengaruh reflektor pada pembangkit listrik termoelektrik menggunakan energi panas matahari,” J. Tek. Elektro, 2020.
  2. G. Alva, L. Liu, X. Huang, and G. Fang, “Thermal energy storage materials and systems for solar energy applications,” Renewable and Sustainable Energy Reviews, vol. 68. 2017. doi: 10.1016/j.rser.2016.10.021.
  3. N. Kannan and D. Vakeesan, “Solar energy for future world: - A review,” Renewable and Sustainable Energy Reviews, vol. 62. 2016. doi: 10.1016/j.rser.2016.05.022.
  4. P. G. V. Sampaio and M. O. A. González, “Photovoltaic solar energy: Conceptual framework,” Renewable and Sustainable Energy Reviews, vol. 74. 2017. doi: 10.1016/j.rser.2017.02.081.
  5. E. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, and K. H. Kim, “Solar energy: Potential and future prospects,” Renewable and Sustainable Energy Reviews, vol. 82. 2018. doi: 10.1016/j.rser.2017.09.094.
  6. K. Joni, M. Zain, R. Alfita, and M. Ulum, “Sistem Mekanik Smart Electric Solar Car Berbasis Android,” JEECOM, vol. 3, no. 1, 2021.
  7. D. Dzulfikar and W. Broto, “OPTIMALISASI PEMANFAATAN ENERGI LISTRIK TENAGA SURYA SKALA RUMAH TANGGA,” 2016. doi: 10.21009/0305020614.
  8. D. Notosudjono, D. Suhendi, and E. Wismiana, “Permasalahan Dan Solusi Pengembangan Energi Terbarukan Di Indonesia,” Fortei, 2016.
  9. Z. Arifin, “Konsumsi Bbm Untuk Pembangkit Listrik Di Indonesia; Kecenderungan, Permasalahan Dan Solusinya,” Miner. Energi, no. June 2015, 2015.
  10. “Rancang Bangun Alat Pendeteksi Detak Jantung dan Saturasi Oksigen dalam Darah Berbasis Arduino MEGA 2560,” J. Ilm. Komputasi, vol. 20, no. 1, 2021, doi: 10.32409/jikstik.20.1.2691.
  11. A. Q. F. Siti, A. Ubaidillah, R. Alfita, P. Studi, T. Elektro, and U. T. Madura, “PERENCANAAN DAN PEMBUATAN PANEL SURYA FOUR AXIST DENGAN PENGATURAN SUDUT REFLEKTOR implementasi kebijakan energi nasional salah satunya yaitu , sektor energi memerlukan Dari gambar di atas dapat dijelaskan bahwasannya parameter untuk menentukan,” vol. 3, no. 1, pp. 1–13.
  12. A. S. Syahab, H. C. Romadhon, and M. L. Hakim, “RANCANG BANGUN SOLAR TRACKER OTOMATIS PADA PENGISIAN ENERGI PANEL SURYA BEBASIS INTERNET OF THINGS,” J. Meteorol. Klimatologi dan Geofis., vol. 6, no. 2, 2019, doi: 10.36754/jmkg.v6i2.120.
  13. K. Sun et al., “VO2 Thermochromic Metamaterial-Based Smart Optical Solar Reflector,” ACS Photonics, vol. 5, no. 6, 2018, doi: 10.1021/acsphotonics.8b00119.
  14. S. Akhtar, M. K. Hashmi, I. Ahmad, and R. Raza, “Advances and significance of solar reflectors in solar energy technology in Pakistan,” Energy and Environment, vol. 29, no. 4. 2018. doi: 10.1177/0958305X18758487.
  15. S. Hanif, D. Rahmawati, R. Alfita, A. S. Awal, and A. F. Doni, “Automatic Clean Water Treatment System Using the Sugeno Fuzzy Method,” in Journal of Physics: Conference Series, 2020, vol. 1569, no. 3. doi: 10.1088/1742-6596/1569/3/032087.
  16. I. Winarno and F. Wulandari, “Solar Tracking System Single Axis Pada Solar Sel Untuk Mengoptimalkan Daya Dengan Metode Adaptive Neuro- Fuzzy Inference System ( Anfis ),” Semin. Nas. Sains dan Teknol., no. November, pp. 1–10, 2017.
  17. M. A. Ridho, B. Winardi, and A. Nugroho, “ANALISIS POTENSI DAN UNJUK KERJA PERENCANAAN PEMBANGKIT LISTRIK TENAGA SURYA (PLTS) DI DEPARTEMEN TEKNIK ELEKTRO UNIVERSITAS DIPONEGORO MENGGUNAKAN SOFTWARE PVSYST 6.43,” TRANSIENT, vol. 7, no. 4, 2019, doi: 10.14710/transient.7.4.883-890.
  18. A. Y. Raisal, H. Putraga, M. Hidayat, and R. Hadi, “Posisi matahari pada saat ekuinoks, summer solstice, dan winter solstice di observatorium ilmu falak Universitas Muhammadiyah Sumatera Utara,” J. Ris. dan Kaji. Pendidik. Fis., vol. 7, no. 1, p. 35, Apr. 2020, doi: 10.12928/jrkpf.v7i1.15772.
  19. T. Firdaus and A. R. Sinensis, “Perdebatan Paradigma Teori Revolusi: Matahari atau Bumi Sebagai Pusat Tata Surya?,” Titian Ilmu J. Ilm. Multi Sci., vol. 9, no. 1, pp. 23–32, 2017.
  20. L. Hernández-Callejo, S. Gallardo-Saavedra, and V. Alonso-Gómez, “A review of photovoltaic systems: Design, operation and maintenance,” Solar Energy, vol. 188. 2019. doi: 10.1016/j.solener.2019.06.017.
  21. A. A. F. Husain, W. Z. W. Hasan, S. Shafie, M. N. Hamidon, and S. S. Pandey, “A review of transparent solar photovoltaic technologies,” Renewable and Sustainable Energy Reviews, vol. 94. 2018. doi: 10.1016/j.rser.2018.06.031.
  22. M. Gul, Y. Kotak, and T. Muneer, “Review on recent trend of solar photovoltaic technology,” Energy Explor. Exploit., vol. 34, no. 4, 2016, doi: 10.1177/0144598716650552.
  23. R. A. Ruli Siregar, N. Wardana, L. Jurusan Teknik Informatika, S. Tinggi Teknik PLN Jakarta Menara PLN, J. Lingkar Luar Barat, and D. Kosambi, “SISTEM MONITORING KINERJA PANEL LISTRIK TENAGA SURYA MENGGUNAKAN ARDUINO UNO,” vol. 14, no. 2, pp. 81–100, 2017.
  24. B. Siswojo, Elektronika Kontrol: Pengantar Desain, Analisis, dan Aplikasi Sistem Kontrol. Universitas Brawijaya Press, 2017.
  25. R. Shah and T. Sands, “Comparing Methods of DC Motor Control for UUVs,” Appl. Sci., vol. 11, no. 11, p. 4972, 2021.
  26. J. O. Jang, “A deadzone compensator of a DC motor system using fuzzy logic control,” IEEE Trans. Syst. Man, Cybern. Part C (Applications Rev., vol. 31, no. 1, pp. 42–48, 2001.
  27. R. S. Ortigoza, J. N. A. Juarez, J. R. G. Sanchez, M. A. Cruz, V. M. H. Guzman, and H. Taud, “Modeling and experimental validation of a bidirectional DC/DC buck power electronic converter-DC motor system,” IEEE Lat. Am. Trans., vol. 15, no. 6, pp. 1043–1051, 2017.
  28. R. ALFITA et al., “Perancangan Solar Tracker Four Axis Berbasis Internet of Things (IoT),” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 8, no. 2, 2020, doi: 10.26760/elkomika.v8i2.404.
  29. A. Fauroq and R. Alfita, “Rancang Bangun Tongkat Cerdas Untuk Penyandang Tunanetra Berbasis Mikrokontroler Menggunakan Fuzzy Logic metode Sugeno,” J. Tek. Elektro dan Komput. TRIAC, vol. 5, no. 2, 2018, doi: 10.21107/triac.v5i2.4357.